Tool/service software model

DUNE Software and Computing

David Adams
BNL

December 15, 2015

Introduction

| will discuss tool/service model for software

Based on experiences in DO, ATLAS and DUNE

Outline

Goals

Art framework

Terminology: utility, tool, service
Tools and services

Connection to the framework
Implementation

Path forward

DetSimDUNE35t as concrete example

D. Adams, BNL Tool/service SW model DUNE SWC

15, 2015

Goals

Comprehensibility (make SW easy to understand)

* Non-expert user should be able to look at job configuration and
understand what is done and what parameters are used
o And then modify actions or parameters for a subsequent run
* Easy to find the code corresponding to a give action in the configuration
o And then easy to understand what that code is doing

Modularity

* Make it easy to replace an action with an alternative implementation

o At natural and fine granularity so user does not have to cut and paste a lot of
irrelevant code

o ldeal development environment would not require user to check out and
build code other than his or her own

Portability (use SW in other frameworks)

* Convenient if code and configuration can be used in other frameworks
o Standalone main or root scripts for analysis
o Other full frameworks to allow for future migration of the production FW

D. Adams, BNL Tool/service SW model DUNE SWC December 15, 2015

Art framework

DUNE and many other experiments use the art framework

* Modularity provided by producers and services
o Both configured at initialization time by art from fcl
* Producer is a class
o art loops over events and calls each producer once for each event
o Producer has means to retrieve data from the current event
o And write data to that event

o It would not make much sense to use a producer outside the art FW as
one would just be duplicating art

o (art also supports analyzers that are similar but do not write data)
e Serviceis aclass
o Called by producers or other services

o Accessed with handle specifying type (either interface of full type)
— Only instance is available for each type

o lItis possible to use services and (service handles) outside the art FW
— Still depend on art libraries for configuration and handle
— See https://github.com/dladams/art_extensions

D. Adams, BNL Tool/service SW model DUNE SWC December 15, 2015

Terminology
Utility
e Class that carries our some action, i.e. provides one or methods

e Configuration typically specified by ctor arguments

e Often stateless after configuration
o Action methods are const

Tool is like a utility except
e Configuration taken from global job configuration
o E.g.afclfile
* Means provided to access any configured instance by name
o E.g.atool handle: ToolHandle<SomeType>(“SomeName”)

o Type name can be that of a Tool interface (w/ multiple implementations)
Service is a tool except

* Only one instance is accessible (singleton)

o So name is not needed in handle
— ServiceHandle<SomeType> () or ToolHandle<SomeType>(

Art supports services but not tools

ll”)

D. Adams, BNL Tool/service SW model DUNE SWC December 15, 2015

Tools and services

Tools and services help to meet out goals
* Mapping between configuration and action in code
* Nested structure (tools call other tools)
o Easy to view or modify at different levels of granularity

* Tool interface

o Makes it easy to replace one implementation with another
— Atrun time
— Can provide new implementation in a user library

* No connection (yet) to FW
o Means tools can be used in other frameworks
o For art services, only true if the service does not register for callbacks

Tools vs. services

* Inthe above, tool can be replaced with “tool and service”
e Services are sufficient if we never want in the same job:

o Two implementations of the same interface
o Two configurations of any implementation

D. Adams, BNL Tool/service SW model DUNE SWC December 15, 2015

Connection to the framework

To run production jobs, we do need to connect to the FW
* For art, this means to define producers
* Like to have access to producer granularity outside of art
e Can accomplish this by defining a tool implementation for each
desired producer

o art producer is a thin wrapper that calls this tool

o Outside art, user would call tool directly
— User might pass and receive the relevant event data
— Probably want an event data service for this

D. Adams, BNL Tool/service SW model DUNE SWC December 15, 2015

Implementation

Use of tools does not ensure modularity and comprehensibility
* Must also do work to define appropriate SW architecture

For modularity, identify and define appropriate interfaces

* |If done well, later implementations of a tool will not change interface
* Will truly be able to plug in a tool from a user repository

Comprehensibility requires attention to configuration and code

* Intuitive naming of tool instances

o Inart, prolog allows multiple named instances of a given service
— Only one instance can be used in the job
— And name does not survive when fcl is resolved (bad for comprehensibility)

Nested structure
* |.e.tools use other tools
* So comprehension and extension can be done at different levels
* Important for both modularity and comprehensibility

D. Adams, BNL Tool/service SW model DUNE SWC December 15, 2015

Path forward

We might move forward as follows
* Note we can stop at any point (including our current state)

1. Move code from producers to services

* ldentify appropriate nested structure

 l|dentify and implement service interfaces
o Consider other producers which may use the same interface

* Implement services copying code from producer
 Replace producer code with service calls
 Ensure fcl for service is comprehensible

2. Create producer service
* Move remaining producer code to a service

* Replace producer code with a call to this service
o E.g. passing and receiving event data

e After this, non-art user can also create data with producer service
3. Replace services with tools where appropriate (see next)

D. Adams, BNL Tool/service SW model DUNE SWC December 15, 2015

Tools

Services compared to tools
* Service has one instance (singleton)
* Tool can have multiple named instances

o Name is a label in configuration used in code to access the tool instance.

Art services can act as tools
* Aslong as we only use one instance in the code
 Multiple instances “exist” only in fcl prolog
* Must map prolog instance to (interface) type name in fcl

Would be nice to have real tools
* Instance names would appear in resolved fcl

o Not just names in prolog (invisible after fcl resolution)
o Getrid of ugly “@local::” in fcl

* Could directly compare action of one tool instance to another
* Could use different tools at different stages of reco

o E.g.ideal and non-deal geometry or calibration for sim and reco

D. Adams, BNL Tool/service SW model DUNE SWC December 15, 2015

Example: DetSimDUNE35t module

| have been working on DUNE DetSim
e Step 1 described earlier

* DetSimDUNE35t - DetSimDUNE and many services
o See https://github.com/dladams/dunezs

* Motivation was the desire to add an alternative zero suppression
o Also like to add new noise simulation based on 35t data
Following slides
e Summarize the work being done
* Provide an example of step 1 of the proposed path forward
* Presented in 35t sim/reco meeting last week

D. Adams, BNL Tool/service SW model DUNE SWC December 15, 2015

DetSimDUNE35t module issues

Monolithic code
* Most of the code is inside the module (> 1500 lines)

* Exception is ZS/compression is partly in raw.cxx
o But nearest neighbor (bulk of code) is in module

* Adding new options (e.g. for noise or ZS) means making this even
bigger (and more difficult to understand)

Monolithic fcl

* Fclis block of many parameters
e Often not obvious which influence which stage of processing
 Many irrelevant because they are for an option not selected

Duplicated code
* Much of code is 35t-specific and so module is duplicated for FD

This is not intended as criticism of development path
* Natural to put code directly in an initially simple module
 And then see this grow as features are added
* But now time to split this up

D. Adams, BNL Tool/service SW model DUNE SWC December 15, 2015

Old module fcl parameters

daqg: { InductionPedRMS: 0.01
CollectionCalibPed: 500 LowCutoffU: 7.5
CollectionCalibPedRMS: 0.01 LowCutoffV: 7.5
CollectionPed: 500 LowCutoffZ: 7.5
CollectionPedRMS: 0.01 NearestNeighbor: 25
CompressionType: "ZeroSuppression" NeighboringChannels:3
DriftEModulelLabel: "largeant" NoiseArrayPoints: 100
FractHorizGapUCollect: 0.1 NoiseFactU: 0.05
FractHorizGapUMiss: 0.8 NoiseFactV: 0.05
FractHorizGapVCollect: 0.1 NoiseFactZ: 0.05
FractHorizGapVMiss: 0.8 NoiseModel: 1
FractHorizGapZMiss: 0.8 NoiseWidthU: 2000
FractUUCollect: 0.5 NoiseWidthV: 2000
FractUUMIiss: 0.2 NoiseWidthZ: 2000
FractUVCollect: 0.1 PedestalOn: "false"
FractUVMiss: 0.2 SaveEmptyChannel: "true"
FractVUCollect: 0.5 SimCombs: "false"
FractVUMiss: 0.2 SimStuckBits: "false"
FractVVCollect: 0.1 StuckBitsOverflowProbHistoName:
FractVVMiss: 0.2 "pCorrFracOverflowVsInputLsbCell"
FractVertGapUCollect: 0.1 StuckBitsProbabilitiesFname:

"ADCStuckCodeProbabilities35t/

FractVertGapUMiss: 0.8 output_produceDcScanSummaryPlots 20150827 coldTest_Op1lt

FractVertGapVCollect: 0.1 0lp4_stepOp0010.root"
FractVertGapVMiss: 0.8 StuckBitsUnderflowProbHistoName:
FractVertGapZMiss: 0.8 "pCorrFracUnderflowVsInputLsbCell"
FractZUMiss: 0.2 —ZeroFhreshold:-5

FractZVMiss: 0.2 module_type: "SimWireDUNE”
InductionCalibPed: 1800 }

InductionCalibPedRMS: 0.01
InductionPed: 1800

D. Adams, BNL Tool/service SW model DUNE SWC December 15, 2015 13

DetSim module flow

The old module is DetSIimDUNE35t

* Inputis SimChannel
o GEANT energy deposit for each channel and particle
o Includes drift attenuation and diffusion

* Qutputis raw data in LArSoft format
o ADC count and assigned threshold for each channel

o Flagindicating if and how the ADC data is zero-suppressed and/or
compressed

e Calculations take place in loop over channels
e Qutput product is constructed

The new module is DetSimDUNE
e Same except calculations mostly done with services
 And afew minor mods

D. Adams, BNL Tool/service SW model DUNE SWC December 15, 2015

Old DetSim module channel loop

Calculations in loop over channels
 ADCsignal is extracted from SimChannel for the channel
o There is an option to create extra signal for the “combs”
o Rather complicated; 35 ton specific
* SignalShapingServiceDUNE35t adds electronics response
o Separate call uses collection response for extra signal
* Noise is calculated
* Combined and converted from floating signal to 12-bit integer count
* Pedestal and pedestal fluctuations are added
o Pedestals and RMS (for fluctuations) are fcl parameters
* Conversion from floating signal to 12-bit integer count is repeated
e Zero suppression, compression and stuck bits are applied

o Some of the code is in raw.cxx
o Complicated ring buffers to allow ZS to take nearby channels into account

D. Adams, BNL Tool/service SW model DUNE SWC December 15, 2015 15

New DetSim module channel loop

Service calls in loop over channels
* SimChannelExtractServiceBase extracts signals from SimChannel
o SimChannelExtractAllService ignore combs
o SimChannelExtract35tService produces base and extra signal as before
e SignalShapingServiceDUNE35t adds electronics response
o Separate call uses collection response for extra signal
e Extrasignal is added to the base signal

* ChannelNoiseServiceBase is used to add noise to the signal
o ExponentialChannelNoiseService reproduces old option 1
o WhiteChannelNoiseService will reproduce option 2

* Pedestal and pedestal fluctuation is added
o Pedestal values and RMS from |IDetPedestalProvider

e Conversion from floating signal to 12-bit integer count

e Add stuck bits (plan to move this to a service)

* ZeroSuppressBase applies zero suppression

* CompressReplaceService compresses (switch to CompressServiceBase)

D. Adams, BNL Tool/service SW model DUNE SWC December 15, 2015 16

Top level fcl

Signal extraction service.
services.user.SimChannelExtractServiceBase: @local::scxall

Channel noise service. \

services.user.ChannelNoiseServiceBase: @local::chnoiseold @local symbols

are taken from

the fcl prolog.
Pedestal service.

services.user.IDetPedestalService: @local::pedfixed

Zero suppression service.
#services.user.ZeroSuppressBase: @local::zsnone
#services.user.ZeroSuppressBase: @local::zslegacy
services.user.ZeroSuppressBase: @local::zsonline

Compression service.
services.user.CompressReplaceService: { Zero: 0 }

D. Adams, BNL Tool/service SW model DUNE SWC December 15, 2015

Prolog fcl for SimChannelExtractBase

scxall: { scx35t: {
service_provider: SimChannelExtractAllService service_provider: SimChannelExtract35tService
} FractHorizGapUCollect: 0.1

FractHorizGapUMiss: 0.8
FractHorizGapVCollect: 0.1
FractHorizGapVMiss: 0.8
FractHorizGapZMiss: 0.8
FractUUCollect: 0.5
FractUUMiiss: 0.2
FractUVCollect: 0.1
FractUVMiss: 0.2
FractVUCollect: 0.5

35t combs FractVUMiiss: 0.2
FractVVCollect: 0.1
FractVVMiss: 0.2
FractVertGapUCollect: 0.1
FractVertGapUMiiss: 0.8
FractVertGapVCollect: 0.1
FractVertGapVMiiss: 0.8
FractVertGapZMiss: 0.8
FractZUMiiss: 0.2
FractZVMiss: 0.2

No combs.

D. Adams, BNL Tool/service SW model DUNE SWC December 15, 2015

Prolog fcl for ChannelNoiseServiceBase

chnoiseold: {
service_provider: ExponentialChannelNoiseService
NoiseFactU: 0.05
NoiseFactV: 0.05
NoiseFactZ: 0.05
NoiseWidthU: 2000
NoiseWidthV: 2000 Noise model 1
NoiseWidthZ: 2000
LowCutoffU: 7.5
LowCutoffV: 7.5
LowCutoffZ: 7.5
NoiseArrayPoints: 1000
OldNoiselndex: true

chnoisewhite: {
service_provider: WhiteChannelNoiseService

}

Noise model 2

D. Adams, BNL Tool/service SW model DUNE SWC December 15, 2015

Prolog fcl for pedestal retrieval

dbretrieval: {
AlgName: "DatabaseRetrievalAlg"
DBFolderName: ""
DBUrl: ""
DBTag: ""

}

pedfixed: {
service_provider: SIOVDetPedestalService
DetPedestalRetrievalAlg: {

AlgName: "DetPedestalRetrievalAlg"
DatabaseRetrievalAlg: @local::dbretrieval
UseDB: false

UseFile: false
DefaultColIMean: 500.0
DefaultCollRms: 0.01

DefaultindMean: 1800.0 LarSoft pedestal service
DefaultindRms: 0.01 configured to used fixed

DefaultMeanErr: 0.0

values as in old DetSim
DefaultRmsErr: 0.0

D. Adams, BNL Tool/service SW model DUNE SWC

December 15, 2015

Prolog fcl for ZeroSuppressServiceBase

zsnone: {

service_provider: ZeroSuppressFixedService

}

zslegacy: {
service_provider:
ZeroSuppress35tLegacyService

AdcThreshold: 10.0
TickRange: 10
MinTickGap: 2
SuppressStickyBits: true
}

zsonline: {

service_provider: ZeroSuppress35tService
NS: 5

NL: 15

ND: 5

NT: 3

TS: 3

TL: 7

TD: 5

D. Adams, BNL Tool/service SW model

No zero suppression.

Same ZS as in old DetSim

Simulation of online ZS

DUNE SWC December 15, 2015

21

Summary/conclusions

Like SW to be comprehensible, modular and portable
Code in tools and services can be used to achieve these

Multi-step path to move code from modules to tools/services
* Described here
 Example of first step given for DetSim

Helpful to have support for tools in art

D. Adams, BNL Tool/service SW model DUNE SWC December 15, 2015

